Как узнать напряжение питания светодиода

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током.

Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Светоизлучающему диоду, как и человеку, необходимо питаться правильно. Только в этом случае он гарантирует многолетнюю и безотказную работу. Светодиоды имеют нелинейную вольтамперную характеристику, схожую с обычным диодом. Поэтому их питание должно осуществляться стабильным током – это один из ключевых принципов.
Если его не соблюдать, последствия для светодиодов могут быть самые плачевные.

Чтобы определить, какая схема питания будет оптимальной в том или ином случае, необходимо для начала узнать исходные данные:

  • параметры светодиода, нормируемые производителем;
  • параметры питающей сети (сеть 220 В, аккумулятор, батарейки или что-то другое).

Самые важные параметры – это номинальный и максимальный ток. При номинальном обычно нормируются световые характеристики – сила света в канделах или световой поток в люменах. Максимальный ток – это предельное значение, при котором можно эксплуатировать данный прибор. Значения этих параметров в современных однокристальных приборах варьируются от нескольких мА до 3 А.

Прямое падение напряжения – напряжение питания светодиодов, которое падает на p-n-переходе при номинальном токе. Его значение пригодиться при расчете выходных параметров источника питания.

Максимальная температура корпуса и p-n-перехода, максимальное обратное напряжение — параметры тоже важные, но в случаях, когда соблюдаются токовые режимы и схема не предусматривает обратного включения, на них можно не обращать внимания.

Какие виды светодиодов существуют и где они применяются

Светодиоды оптического диапазона применяются в качестве элементов индикации и в качестве осветительных приборов. Для каждой специализации существуют свои требования.

Индикаторные светодиоды

Задача индикаторного светодиода – показать состояние прибора (наличие питания, аварийный сигнал, срабатывание датчика и т.п.). В этой сфере широко применяются LED со свечением p-n перехода. Приборы с люминофором применять не запрещено, но особого смысла нет. Здесь яркость свечения не на первом месте. В приоритете контрастность и широкий угол обзора. На панелях приборов применяют выводные светодиоды (true hole), на платах – выводные и SMD.

Осветительные светодиоды

Для освещения, наоборот, в основном применяют элементы с люминофором. Это позволяет получить достаточный световой поток и цвета, близкие к естественным. Выводные СД из этой области практически выдавлены SMD-элементами. Широкое применение находят COB-светодиоды.

В отдельную категорию можно выделить приборы, предназначенные для передачи сигналов в оптическом или ИК-диапазоне. Например, для пультов дистанционного управления бытовой аппаратурой или для охранных устройств. А элементы УФ-диапазона могут использоваться для компактных источников ультрафиолета (детекторы валют, биологических материалов и т.д.).

Яркость свечения светодиода

Многие покупатели задают вопрос — что означают все эти характеристики светодиодов, указанные на упаковках и в спецификациях? Ватты, люмены, длина волны, свечи, канделы, мили канделы — это лишь немногая часть терминов, которые используются для определения яркости света. Вот несколько параметров, которые необходимо знать для бытового определения яркости, не вдаваясь в подробности фотометрии:

Сила света (luminous intensity, обычно измеряемая в канделах -cd или миликанделах mcd). Яркость одной канделы примерно равна яркости одной обычной свечи. Миликандела (или мкд) одна тысячная канделы, отсюда приставка «мили». 1000 миликандел = 1 кандела.

Поскольку свет распределяется неравномерно, угол освещения (viewing angle) является очень важным параметром для светодиодов. Восприятие освещенности зависит от местоположения смотрящего, поэтому необходимо определить какую часть комнаты необходимо осветить и определить необходимое количество и расположение ламп. Этот параметр зависит, в том числе, от типа линзы. Рассеивающая (матовая) линза будет формировать более широкий угол освещения, но такой свет может восприниматься более тусклым, чем от светодиода с прозрачной линзой.

Другой важный параметр — световой поток (Luminous flux) или «мощность» света в потоке, который можно определить, если известна сила света и угол освещения. Световой поток — это показатель «мощности» света, с учетом длины волны, которая воспринимается человеком. Световой поток измеряется в люменах.

Нетрудно заметить, что угол освещения очень сильно влияет на световой поток. Светодиодная 5000 мкд лампа с углом освещения в 60 градусов в четыре раза мощнее чем аналогичная с углом освещения в 30 градусов.

Потребляемая мощность в ваттах — это параметр, который не так давно был для нас единственным для определения яркости лампы накаливания, но для светодиодных ламп этот параметр не является определяющим. Технология производства развивается и у светодиодов одинаковой яркости может быть разное потребление энергии. Но для упрощения восприятия производители указывают на упаковке ламп бытового применения аналог лампы накаливания/ галогенной лампы по энергопотреблению. Этим значениям в большинстве случаев можно доверять, если вы приобретаете лампы известных производителей, таких как Philips, Cree, Osram.

Для ориентира, приведем следующее сравнение различных ламп General Electric:

сравнение эффективности ламп освещения General Electric

Предыдущая статья: Как снизить стоимость света? Купите светодиодные лампы для дома Следующая статья: Светодиодный дюралайт

Основные характеристики

Есть много вариантов его удешевить, заменить дорогостоящие материалы дешевыми. Самая главная особенность, что такая замена никак не сказывается на внешнем виде, поэтому и возникают такие вопросы.

Список отличий влияющих на цену:

  1. материал основания, медь или алюминий;
  2. количество проводников идущих к кристаллу;
  3. материал проводников;
  4. масса светодиода;
  5. срок службы по стандарту L70 или L80;
  6. максимальная рабочая температура;
  7. количество Люмен на 1 Ватт;
  8. качество люминофора;
  9. индекс цветопередачи CRI;
  10. размер кристалла;
  11. качество кристалла;
  12. разброс технических характеристик;
  13. точность пайки и сборки.

Некоторые параметры можно будет определить только после 5000ч. работы:

  • скорость деградации КР;
  • эффективный срок эксплуатации;
  • качество жёлтого люминофора.

Считаю, что на окупаемость первостепенную роль играет эффективный период службы по стандартам L80 и L70. Для уличных светодиодных светильников второстепенные параметры особой роли не играют.

Параметры питающей сети

При изготовлении любого устройства своими руками, необходимо определить параметры источника, который будет осуществлять питание светодиодов. Сеть 220 В, автомобильный аккумулятор на напряжение 12 В или простые батарейки – в любом случае необходимо определить диапазон питающего напряжения, то есть минимальное и максимальное его значение. На сеть 220 В дается (но не всегда соблюдается) допуск ±10%. Для аккумулятора берется в расчет напряжение при полной зарядке и в разряженном состоянии. С батарейками и так всё понятно.

В случае с автономными источниками питания важно также узнать их емкость и максимальный выходной ток

Простейшая схема

Пусть стоит задача сделать своими руками примитивный светодиодный фонарик, питающийся от одной батарейки. Возьмем, к примеру, светодиод C503C (CREE) с номинальным током ILED=20 мА и падением напряжения ULED =3,2 В.

В качестве источника питания используем литиевую батарейку на 3,7В (если использовать пальчиковые батарейки, то одной не обойдешься).

Если включать светодиод напрямую, то сила тока через светодиод будет ограничиваться только внутренним сопротивлением батарейки, что в лучшем случае будет приводить к очень быстрому ее разряду, а в худшем к выходу из строя светодиода. Простейшая схема включения показана на рисунке ниже.

Для ограничения тока используется резистор, сопротивление которого определяется по формуле R=(UБ-ULED)/ ILED. В нашем случае сопротивление составит 25 Ом.

При увеличении мощности диода, схема будет усложняться, т.к. при больших токах применять резистор нецелесообразно – слишком большие потери мощности. Если напряжение питания имеет большой диапазон, эта схема тоже не годится, потому что не обеспечивает стабилизацию тока.

Как определить напряжение питания светодиодов

Источник питания для светодиодов — основная комплектующая деталь, которая преобразует сетевое напряжение. Как известно светодиоды питаются током, но напряжение, которое подается в данном случае, значения не имеет. Это может быть как 12 В, так и 1000 В. Главное для светодиода — это ток. При его нехватке свет лампочек тускнеет, а при переизбытке они начинают нагреваться, и даже теплоотвод не всегда может справиться. Если простая лампа накаливания «самостоятельно» выбирает для себя ток, то светодиод сам выбирает напряжение. Если светодиод требует напряжение в 5 В, а блок питания подает ему, к примеру, 5 В, то высока вероятность того, что светодиод просто сгорит. Дело в том, что возникает «конфликт» между источником питания и светодиодом. Первый пытается честно выдать 5 В, а второй старается взять только положенные для себя 3 В. Светодиод может «просадить» напряжение до нужного, если блок питания слабенький, но чаще в этой схватке все же побеждает хаос и разрушение и светодиод перегорает.

Чтобы подобных проблем не возникло, необходимо стабилизировать ток. Самый простой вариант — резистор. Он подключается последовательно со светодиодами. Резистор помогает ослабить источник питания и заставить его выдавать светодиоду нужное напряжение. Если речь идет о мощных светодиодах, то слабенькому резистору с ними не справиться. В этой ситуации потребуется полноценный стабилизатор.

Расчет резистора провести довольно просто. Для вычислений необходимо знать напряжение питания, падение напряжения и ток. От значения напряжения питания отнимают падение напряжения, а получившуюся величину делят на ток. Теперь остается только выбрать резистор с ближайшим стандартным сопротивлением. Некоторые предпочитают вообще убирать из формулы падение напряжения, так как его точное значение не всегда известно, но ниже приведены два способа для определения этой величины.

Какое напряжение идёт на диод

Производители указывают номинальное прямое напряжение. Это значение будет различным для каждого типа светодиода. Но не нужно каждый раз проверять значения в документации. Достаточно использовать примерную таблицу, содержащую безопасные диапазоны напряжения:

Прямое напряжение LED в зависимости от цвета

Приведенная таблица содержит значения, которые были записаны из даташитов наиболее популярных производителей светодиодов. Конечно есть исключения, например сверх-яркие или мощные светодиоды. Но в случае с обычными, можно смело пользоваться этой таблицей.

А это ещё одна, аналогичная.

В общем когда пропускаем через LED ток желаемой интенсивности (например 20 мА), то прямое напряжение на нем устанавливается само. 

Лазерные диоды

Лазерные устройства – это отдельный вид светодиодов, который не относиться ни к индикаторным, ни к осветительным. Да и технология его создания мало чем напоминает производство стандартных led-элементов.

По сути, это полупроводниковый лазер, который построен на базе светодиода. При включении они излучают очень узкий световой пучок. Современные устройства имеют угол рассеяния от 5 до 10°. В продаже имеются устройства, которые работают в видимом диапазоне, а также инфракрасные и ультрафиолетовые лазерные диоды.

Такие кристаллы устанавливают в лазерные указки, целеуказатели, приводы оптических дисков, оптические мыши и т. д.

Виды светодиодов:

– индикаторные;

– осветительные.

Индикаторные представляют собой слабые по яркости и мощности элементы, применяемые чаще всего в различных электронных приборах в качестве индикаторов включения/выключения той или иной функции: подсветка панели приборов в транспортном средстве, жидкокристаллическом телевизоре, компьютерном блоке питания и прочее. Их распространение весьма широко, т.к. эти маломощные LED-приборы не требуют дорогостоящего оборудования для изготовления, а потому их себестоимость мала.

Осветительные диоды – это элементы с высокой мощностью и яркостью, основная область применения которых – осветительные электрические приборы.

Классификация светодиодов по их области применения

Элементы led-освещения различаются по области их применения. Основные типы светодиодов: индикаторные и осветительные. Устройства не одинаковы, каждые имеют свои отличительные особенности и технические параметры.

Индикаторные светодиоды

Первый LED-светильник появился в середине прошлого века. Прибор имел тусклое красноватое свечение, небольшую энергетическую эффективность. Несмотря на недостатки, разработки в данном направлении были продолжены. Спустя 20 лет появились варианты с желтым и зеленым оттенком. К началу 90-х сила светового потока достигла 1 Люмена. К началу 2000-х значение достигло уровня 100 Люменов.

В 1993 году японские инженеры представили светодиод синего цвета. Свет устройства стал значительно ярче предшественников. С этого момента на рынке стали появляться устройства с разным свечением – сочетание синего, зеленого, желтого и красного позволяют создавать любой цвет и оттенок.

Осветительные светодиоды

Первые модели с низкой светимостью (DIP) были пригодны для индикаторной работы (например, в темноте виден выключатель – горит небольшой красный светодиод). Современные устройства позволяют освещать значительные площади – бытовые и промышленные помещения. Мощность светодиода выросла – LED-прибор для фонарика с показателем 3Вт аналогичен лампе накаливания на 25-30Вт. Потребление электроэнергии меньше примерно в 10 раз.

Такие светодиоды получили название осветительные благодаря основной области применения. Используются в лентах, фарах, лампах, других изделиях. Изготавливаются в отдельных корпусах, которые допускают поверхностный монтаж.

Основное отличие – выдают только белый свет холодного или теплого оттенков. Классификация:

  • SMD – популярны модели с рассеивающим элементом на 100-130°; подложка для лампы из меди или алюминия, не нагреваются;
  • СОВ – более мощные, сверхъяркие, состоят из множества небольших кристаллов, угол рассеивания значительный;
  • Filament – обладают самым низким КПД (в сравнении с SMD), часто используются как декоративные элементы, изготавливаются различных размеров и форм.

Исходя из назначения и параметров помещения, выбирают оптимальный вариант. Характеристики осветительных устройств указаны на упаковке и в технической документации.

Как определить напряжение

Самый очевидный метод определения напряжения полупроводникового прибора – это использовать регулируемый источник питания. Если блок питания регулируется с нуля и при этом возможен контроль тока (а еще лучше – его ограничение), то больше ничего не нужно.

Надо подключить LED к источнику, строго соблюдая полярность. Дальше надо плавно поднимать напряжение (до 3..3,5 В). При определенном напряжении светодиод вспыхнет в полную силу. Этот уровень будет примерно соответствовать рабочему току, который можно считать по амперметру. Если у прибора нет встроенного амперметра, то крайне желательно контролировать ток по внешнему прибору.

Проверка светодиода с помощью регулируемого источника питания.

Такой метод применим к приборам оптического диапазона. Свечение УФ- и ИК-светодиодов не видно человеческим зрением, но в последнем случае можно наблюдать за включением LED через камеру смартфона. Таким методом можно отследить появление инфракрасного излучения.

Свечение ИК-светодиода не видно невооруженным глазом, но наблюдается через камеру смартфона.

Если регулируемого источника нет, можно взять обычный блок питания с фиксированным выходом, заведомо превышающим предполагаемое напряжение светодиода. Или даже батарейку на 9 В, но в этом случае можно будет проверить только светодиод небольшой мощности. К светоизлучающему элементу надо последовательно припаять резистор так, чтобы ток в цепи не превысил верхний предел. Если предполагается, что LED маломощный и работает при токе не более 20 мА, то для источника с выходным напряжением 12 В резистор должен быть около 500 Ом. Если используется мощный осветительный прибор (например, типоразмера 5730) с током 150 мА (батарейка такой ток обеспечит не всегда), то резистор должен быть около 10 Ом. Надо подключить цепочку к источнику постоянного напряжения, убедиться в зажигании LED и замерить падение напряжения на нем.

Светодиод с припаянным резистором.

Существуют и альтернативные способы узнать, на сколько вольт рассчитан светодиод.

Мультиметром

Правильная полярность подключения LED к тестеру.

У некоторых мультиметров напряжение, подаваемое на клеммы в режиме тестирования диодов, достаточно велико для зажигания LED. Такой измерительный прибор можно использовать для определения рабочего напряжения светодиода, одновременно проверяя цоколевку полупроводникового элемента. При верном подключении p-n переход начнет светиться, а тестер покажет какое-то сопротивление (зависит от типа LED). Проблема этого метода в том, что для замера фактического значения Uрабочего на выводах светодиода потребуется второй мультиметр. И другой момент: измерительного напряжения мультиметра вряд ли будет достаточно для вывода светодиода в рабочую точку по току. Визуально это заметно по недостаточно яркому свечению, а для замеров это будет означать, что светодиод не вышел на линейную часть ВАХ и фактическое значение рабочего напряжения будет выше.

По внешнему виду

Сигнальные светодиоды различного цвета свечения.

Рабочее напряжение приблизительно можно оценить по внешнему виду и цвету свечения LED (иногда цвет можно определить даже не подавая питание на прибор). Для этого можно воспользоваться таблицей, приведенной выше. Но однозначно определить напряжение по цвету свечения светодиода не получится. Зачастую производители подкрашивают компаунд, чтобы цвет излучения p-n перехода сложился с цветом линзы и получился новый оттенок. К тому же даже в пределах одного цвета существует разброс параметров (см. таблицу) для светодиодов разных типов. Так, для LED белого свечения разница напряжений может достигать более 50%.

Подключение светоизлучающего диода к сети 220 В

Если запитать светодиод прямо от 220 В с ограничением его тока, то светить он будет при положительной полуволне и гаснуть при отрицательной. Но это только в том случае, когда обратное напряжение p-n перехода будет много больше 220 В. Обычно это в районе 380-400 В.

Второй способ включения– через гасящий конденсатор.

Сетевое напряжение подают на «мост» на диодах VD1-VD4. Конденсатор С1 «погасит» около 215-217 В. Остаток выпрямится. После фильтрации конденсатором С2 постоянное напряжение подают на светодиод. Не забудьте об ограничении тока через диод резистором.

Еще одна схема подключения – с однополупериодным выпрямителем на диоде и с ограничивающим резистором, величиной 30 кОм.

Подробная информация о подключении светодиода к сети 220 В .

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Параллельное подключение светодиодов

Здесь у нас всё наоборот. Силу тока нужно умножить на количество светодиодов, а падение напряжения посчитать только 1 раз.
Сила тока: I = 0,025 * 15 =0,375 А
Нам потребуется источник питания, способный выдать максимальный ток в 0,375 А. Округлим до 0,35 (помните, что лучше «недолить»?). По напряжению тоже укладываемся: 12 — 2 = 10. Остаётся с большим запасом.

Пытливый читатель, запнувшийся парой абзацев ранее, может воскликнуть: «Погодите! Так зачем нам 12 вольт, если мы можем обойтись и пятью?». «Можем!» — ответим ему мы. Но не торопитесь с выводами, это ещё не конец.

Мы определились, что светодиоды будут подключены параллельно. Необходимо ограничить ток в цепи. Допустим, специального драйвера у нас нет. Возьмём резистор. Рассчитаем необходимое сопротивление по давно известной формуле: 12 В / 0,35 А ~ 35 Ом. Подключим его между источником питания и анодами светодиодов:

Неправильное параллельное подключение трёх светодиодов

Вот, казалось бы, и всё. Но есть проблема:

ТАК ДЕЛАТЬ НЕЛЬЗЯ!!!

Как отмечалось выше, светодиоды не обязательно имеют те характеристики, которые заявлены производителем. Всегда есть разброс. И вот мы задали ток в 0,35 ампер и смотрим на светящуюся линейку светодиодов. Но всем им нужен разный ток. Одному , как мы и рассчитывали 25мА, другому — 20мА, третьему 21мА, а вот нашёлся совсем кривой светодиод, ему нужно всего 15мА. А мы пропускаем через него 25 — почти в 2 раза больше. Светодиод греется и быстро перегорает. В линейке стало на 1 светодиод меньше. Теперь для питания оставшихся светодиодов нам требуется 35мА. Пока всё не выглядит особенно плохо. Мы ограничили ток с запасом. Мы молодцы. Но не выдержал ещё один светодиод. Осталось 13. Теперь весь наш ток делится не на 15, а на 13 светодиодов. На каждый из них приходится по 26мА. Теперь абсолютно все светодиоды работают на повышенном токе. Очень скоро перегреется следующий. Самые стойкие получат уже по 29мА — 116% от номинала. Всего 2 перегоревших светодиода запустили цепную реакцию. Скоро вся линейка перегорит, а вы так и не поймёте почему (ну или поймёте, мы же только что всё разобрали). Собственно, избавиться от такого печального сценария просто. Нужно к каждому светодиоду поставить по собственному токоограничительному резистору. Для тока в 25мА и напряжения 12В нужен резистор на 480 Ом. Это не спасёт от проблемы «кривых» светодиодов, но их перегорание никак не повлияет на остальные.

Достоинства: высочайшая надёжность.Недостатки: высокое потребление тока, высокая стоимость схемы.

Правильное параллельное подключение трёх светодиодов

Параллельное подключение светодиодов — идеальный вариант. Всегда стремитесь к тому, чтобы подключать светодиоды параллельно и ограничивать ток каждого светодиода по отдельности своим резистором.  Если вы используете светодиодные драйверы (стабилизаторы тока), то каждому светодиоду нужно подключать свой драйвер. Именно поэтому параллельные схемы с большим количеством светодиодов становятся слишком дорогими. В реальности приходится идти на компромисс и объединять светодиоды в цепочки.

Устройство светодиода.

Led-диод состоит из полупроводникового кристалла, который закреплен на подложке, корпуса с контактами и оптической системы.

Устройства индикаторных (DIP), плоских (SMD) и СОВ элементов различаются снаружи. 

Конструктивное устройство DIP.

DIР-светодиод в разрезе.

В основании прибора монтируются контакты. Кристалл (один или несколько) закреплен на катоде. К кристаллу присоединяется проволока. Она соединяет полупроводники с анодом. Это необходимо для группировки двух проводников с различными типами проводимости. Сверху led-элемент герметично покрывается линзой. Корпус устройства изготавливается в виде цилиндра из эпоксидной смолы, край которого обрезан со стороны катода. Монтаж led-элемента происходит путем пайки длинных выводов.

Конструктивное устройство SMD.

SMD-светодиод в разрезе.

Корпус изготавливается параллелепипедом. Его основа – теплоотвод от кристалла. На  нее монтируется полупроводниковый элемент. Контактный провод соединяет его с анодом. Контакты выполняются плоскими. Сверху элемент герметично накрывается линзой.

Конструктивное устройство СОВ.

COB-технология – новейшее направление в производстве.

Такие светоизлучающие диоды имеют в основании теплопроводящую подложку (обычно алюминиевую). На нее непроводящим клеем закрепляют полупроводниковые кристаллы, которые объединены по последовательно-параллельной схеме. Сверху все покрывается люминофором.

Такой тип led легко монтируется, выдает хороший световой поток и не искажает цвета. Востребованы в производстве небольших, ярких прожекторов и декоративной подсветки. В отличие от DIP и SMD способны работать при повышенных температурах. Но из-за своего устройства имеют меньший срок эксплуатации по сравнению.

Если на одной подложке смонтировано множество кристаллов, то такой led-элемент называется светодиодной матрицей.

Конструктивное устройство PCB Star.

Состоит из одного большого кристалла, который монтируется на алюминиевую подложку в форме звезды. За счет увеличенной площади кристалла повышается мощность светодиода. Упрощается его фокусировка. Поэтому РCB Star востребованы в производстве ярких источников света: от фонариков до прожекторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector